background image

7

Irina NASALCIUC

THE STRATEGIC DEVELOPMENT OF THE 

RENEWABLE ENERGY SECTOR IN MOLDOVA: 

MODELS FOR INVESTMENT MANAGEMENT 

DOI: 

https://doi.org/10.36004/nier.es.2023.1-02

JEL classification: D78, D81, E65, G18, L52
UDC: 338.45:620.97(478)

Irina NASALCIUC, 

PhD Student, National Institute for Economic Research, Academy of Economic Studies of Moldova

https://orcid.org/0009-0001-1601-6133

e-mail: [email protected]

Received 1 February 2023

Accepted for publication 13 June 2023


background image

8

ECONOMY and SOCIOLOGY 

June No. 1/2023

SUMMARY

The periodic paradigm shifts operating on the energy markets require higher innovative approaches to facilitate the 

management of energy portfolios and the design of mechanisms for an accelerated renewable energy integration. 

Thus, international organizations, policy makers and managerial boards are continuously seeking for policy 

amendments and adjustments that would enhance the investments in the renewable energy sector and stimulate 

the transition towards the smart energy grids’ models.

The current study aims to review and apply some of the existing models for the management of renewable energy 

investments, using as a case study Moldova’s economy structure and its statistical data. The study is based on systemic 

research methods, forecasting models and estimates to identify most productive management tactics, able to ensure 

the proper integration of smart energies into the energy network. The author presents a model for forecasting the 

demand of the renewable energy market in Moldova till 2025 and 2030 year with an emphasis on the electricity 

segment. It also points out opinions and estimates that reflect a different perspective on the effects of investments’ 

management at the electricity segment level and proposes solutions that may help decision-makers in the development 

and  integration  of  the  country’s  renewable  energy  policy.  The  study  offers  the  necessary  evidence  and  grounded 

solutions for attracting and promoting investments in renewable energy projects, whereas the obtained methodology 

and results have a general relevance for other countries in the region with emerging economies.

Keywords: 

renewable energy, investment management models, demand forecast 

Schimbările periodice de paradigmă operate pe piețele energetice necesită abordări inovatoare pentru a facilita 

gestionarea portofoliilor energetice și formarea mecanismelor pentru accelerarea integrării energiei regenerabile. 

Organizațiile internaționale, factorii de decizie și investitorii urmăresc introducerea continua de amendamente și 

ajustări a politicilor menite să sporească investițiile în sectorul energiei regenerabile și să faciliteze tranziția către 

modelele rețelelor energetice inteligente.

Lucrarea își propune să revizuiască și să aplice unele modelele existente pentru managementul investițiilor în 

energie  regenerabilă,  folosind  datele  statistice  și  structura  economiei  Moldovei  ca  studiu  de  caz.  Studiul  este 

bazat pe metode sistemice de cercetare, modele de previziune și estimări pentru a identifica tactici productive 

de management, capabile să asigure integrarea corespunzătoare în rețeaua energetică a energiilor inteligente. 

Autorul prezintă un model de prognoză a cererii pieței de energie regenerabilă din Moldova până în anii 2025 

și 2030, cu accent pe segmentul energiei electrice. Sunt prezentate estimări care reflectă o optică nouă asupra 

efectelor managementului investițiilor în energia electrică, propuse câteva soluții care ar putea ajuta factorii de 

decizie în elaborarea și integrarea politicii de energie regenerabilă a țării. Studiul oferă mai multe raționamente 

și  soluții  argumentate  care  ar  contribui  la  atragerea  și  promovarea  investițiilor  în  energie  regenerabilă,  iar 

metodologia și rezultatele obținute au o relevanță generală pentru alte țări din regiune cu economii emergente.

Cuvinte cheie:

 

energie regenerabilă, modele de management a investițiilor, prognoza cererii

Периодические изменения парадигмы, действующие на энергетических рынках, требуют инновационных 

подходов,  чтобы  способствовать  управлению  энергетическими  портфелями,  а  так  же  формированию 

механизмов  оценки  интеграции  возобновляемых  источников  энергии.  Таким  образом,  международные 

организации, институты власти и инвесторы ожидают постоянного внесения поправок и корректировок 

в  политику,  направленных  на  увеличение  инвестиций  в  сектор  возобновляемых  источников  энергии  и 

облегчение перехода к моделям интеллектуальных энергосистем.

Целью статьи является обзор и применение некоторых существующих моделей значимых для управления 

инвестициями в возобновляемые источники энергии на основе использования статистических данных и 

структуры экономики Молдовы в качестве примера. Исследование основано на применении системных 

методов, прогнозных моделей и оценок для определения продуктивной тактики управления, способной 

обеспечить правильную интеграцию в энергетическую сеть возобновляемых энергий. Автор предлагает 

модель по прогнозированию спроса рынка возобновляемых источников энергии в Молдове до 2025 и 2030 

годов, акцентируя внимание на сектор электроэнергии, представляет концепции и оценки, отражающие 

различный  взгляд  на  эффект,  получаемый  от  вложения  инвестиций  в  электроэнергетику,  а  также 

предлагает некоторые  решения, которые могут помочь лицам, принимающим решения в разработке и 

интеграции политики страны в области возобновляемых источников энергии. В исследовании предложены 

аргументированные обоснования и решения, которые будут способствовать привлечению и продвижению 

инвестиций в возобновляемые источники энергии, а методология исследования и полученные результаты 

имеют актуальность и могут быть полезны для других стран региона с развивающейся экономикой. 

Ключевые слова: 

возобновляемая энергия, модели управления инвестициями, прогноз спроса


background image

9

Irina NASALCIUC

INTRODUCTION

Moldova is a European landlocked, post-Soviet country 

with an emerging upper middle-income economy still 

undergoing a transition phase in terms of economic 

structures and operating regimes. It is important to 

note that Moldova has minor reserves of coal, oil, and 

natural gas, as well as a moderate hydropower potential. 

As a result, the country heavily relies on energy imports, 

primarily from Russia, Ukraine, and Romania. This 

dependence poses continuous security challenges in 

energy supply, leading to an unreliable and sometimes 

costly access to energy in various forms and technologies.

Currently,  Moldova  is  making  significant  efforts 

to establish competitive renewable energy market 

niches capable of penetrating the energy market 

and competing with the conventional technologies. 

However, the country faces major issues with its energy 

infrastructure, including outdated installations and low-

quality thermal insulation in both residential and public 

buildings. Consequently, Moldova’s economy exhibits a 

high degree of energy intensity, surpassing the average 

energy intensity values of European countries.

The  technical  deficiencies,  coupled  with  legislative 

gaps and the lack of stable governmental frameworks 

for renewable energy sources (RES) deployment, 

create an environment of investment reluctance. 

Investors perceive high levels of risk associated with the 

established business regulatory frameworks in which 

they would operate while entering Moldova’s renewable 

energy market.

Overall, Moldova’s energy landscape requires 

substantial improvements in infrastructure, legislation, 

and governmental support to enhance energy security, 

reduce energy intensity, and attract sustainable 

investments in renewable energy technologies (RET).

Over the last ten years, Moldova registered an increase 

in both primary and final energy consumption of about 

16,4% and 21,5% respectively. The data of the National 

Bureau  of  Statistics  (NBS)  show  that  Moldova’s  final 

energy demand increased by an average of 1-2% per year, 

reaching the level of 2,924 thousand toe in 2021. After 

2019 year, the gross domestic consumption decreased 

due to the stagnant economy affected by the COVID-19 

pandemic, registering a level of only 2,670 thousand toe in 

2020. However, in 2021, thanks to the economic recovery 

processes after the lift of all restrictions on businesses, 

the  final  energy  consumption  recovered  and  recorded 

the highest level since the 2010 year. Currently, only 

20% (or 0,98 TWh) of the electricity that Moldova needs 

(3,85 TWh)) is produced and generated in the country 

(excluding the plan on the left side of Nistru River, at 

Cuciurgan), mainly by the combined heating and power 

plants, and only 13,4% of it comes from RES sources. 

 In the context of the energy crisis that began in 2021-

2022, Moldova’s energy vulnerability has worsened, 

exposing chronic problems within the system. As a 

result, given the recent progress in developing electric 

power frameworks and the country’s obtained status 

of an EU accession candidate. Moldova is committed 

to transposing European targets aiming to achieve a 

34%  share  of  renewable  generation  in  final  electricity 

consumption by 2025. This target would require a 

capacity of approximately 450 MW, based on electricity 

consumption levels from the year 2020, and would 

primarily rely on photovoltaic, wind, hydrological, and 

cogeneration-based projects.

On the same note, it is essential to mention that at the 

beginning of the year 2023, the main national energy 

operator and distributor - Moldelectrica, reported a 

total of 62 requests for connection to the electricity 

network submitted between 2016 and the end of 

2022. These requests aim to connect future power 

plants for electricity production based on renewable 

energy sources (RES) technologies such as solar, wind, 

and biogas, potentially leading to a total capacity of 

1,22 GW. Most of these power plants are expected to 

become operational in the near future, which requires 

a strengthened electric power system to accommodate 

these new sources of generation.

Consequently, a series of physical replanning and 

enhancements, along with amendments to the 

regulations and norms of the political and legal 

frameworks, are critically needed. These measures will 

establish the activities of market actors and ensure they 

are prepared for the active absorption of RES sources in 

the energy system.

Gropa’s research studies (

2018

) demonstrated that 

the local power system would be capable of absorbing 

approximately 1 GW of renewable sources, considering 

current infrastructure conditions. However, an 

increased absorption of solar and wind generation 

would pose a significant challenge since Moldova relies 

entirely on Ukraine for grid balancing. 

To address this issue, the government decided to 

impose ceilings on the development of RES capacities, 

aiming to avoid network management problems and the 

high costs associated with balancing RES generation. 

The Government of Moldova is actively interested in 

fostering a business environment that facilitates the 

development of projects based on RETs.


background image

10

ECONOMY and SOCIOLOGY 

June No. 1/2023

LITERATURE REVIEW

Energy transition processes depend on market saturation 

levels at certain stages and long-term quantitative 

energy demand forecasts. Adapting the modeling of 

RES energy portfolios to future market needs is based 

on long- and medium-term energy demand forecasts. 

The investment management models are essential in 

the planning, testing, streamlining, and development of 

energy markets at local, regional and national levels.

The development of the energy demand forecasting 

models started around 1985 year, it spiked after 2005 

and continues till nowadays. Initially, there was a 

stringent need to assess the energy planning models to 

determine the long-term and medium-term evolution of 

energy markets, and later, when the RETs penetrated the 

energy markets, the need for a more rigid and rigorous 

management of energy supply and demand fluctuations 

arose. Based on the realities of the modern energy 

markets, there was also the need to develop energy 

forecasting  models  that  would  allow  the  identification 

of  more  efficient  investment  management  models 

that would align to word’s current pace of innovation, 

conducted operations on the market and globalization 

of the economies. Also, given the constant increase 

in worldwide energy consumption, it has become 

imperative to entail targeted energy consumption 

efficiency  models  both  at  the  industrial  level  and  at 

the level of individual households. Ultimately, the 

biggest concern of researchers and academia in the 

development of energy production models is the 

minimal environmental impact and/or carbon capture, 

so that the climate change process is slowed down 

(

Nasalciuc, 2016a

), in accordance with the sustainable 

development principles (

Greene D. L., 2009

), and with 

the World Energy Council’s “Energy Trilemma Index” 

(

2002

), which considers: 1) “a nation’s capacity to meet 

current and future energy demand reliably, withstand 

and bounce back swiftly from system shocks with 

minimal disruption to supplies, 2) a country’s ability 

to  provide  universal  access  to  affordable,  fairly  priced 

and abundant energy for domestic and commercial use, 

and 3) a country’s energy system transition towards 

mitigating and avoiding potential environmental harm 

and climate change impacts”.

The specialized literature is generous in terms of 

case-studies researching various RES investments 

implemented  in  different  regions  of  the  world 

(

Schwerhoff  et.  al.,  2017

Schinko & Komendantova 

2016

Abdullahi et al., 2017

Movilla et al., 2013

), or for 

different  RETs  (

Shaktawat  &  Vadhera,  2021

Schiera 

et al., 2019

Qiu et al., 2020

). There are also a series 

of research papers that assess the major barriers for 

large-scale RES investments and the associated risk 

management practices (

Egli, 2020

Kitzing, 2014

Liu 

& Zeng, 2017

Nasalciuc, 2016b

), that can serve for 

planning of policy adjustments. At the same time, there 

is a limited number of studies that assess and apply 

different models for investment management of RES at 

the macro level (

Lee et al., 2017

), investment planning 

(

Taghizadeh & Yoshino, 2020

Cohen et al., 2021

Cohen 

J. J. et al., 2021

) and planning from the environmental 

point of view (

Dato,  2018

).  These  gaps  can  be  filled 

by models selected and adapted to the energy sector, 

considering  the  expected  effects,  the  profile/design  of 

the energy market, the portfolio of managed sources, 

the structure of the economy and the socio-economic 

situation.

In carrying out a deep study of RES investments’ 

management, the author reviewed the literature, 

especially the one applicable and considered by the 

European market, (

Kleinpeter, 1995

Prasad et al., 2014

that determines and identifies the existing models used 

in the management process of energy sector investments 

that can serve for the design of the necessary resources, 

the substantiation of investments (at the same time 

being an argument for the definition of policies aimed 

at promoting the energy transition), and propose the 

following classification of energy management models:

• 

Energy demand analysis and forecasting models 

• 

Energy supply planning models

• 

Energy optimization models (integrated energy supply and demand models)

• 

Emission reduction models

In this study we will focus primarily on the demand 

analysis and forecasting models to provide qualitative 

findings  to  inform  the  energy  market  policy  design 

and identification of RES market development targets. 

Analysis and systematization of existing literature 

(

Deeble  &  Probert,  1986

Sterman,1988

Sterman & 

Davidsen,  1988

Labys,1990

Zmeureanu, 1992

Badri, 

1992

Michalik, et al., 1997

Debnath & Mourshed, 2018

provide a certified methodological basis for identifying 

energy markets’ development stages, analysing the 

energy demand and for designing long- and medium-

term management directions. 

Studies (

Ang & Zhang, 2000

Ang, 2004

) show 

that energy demand can be researched using the 

decomposition method by identifying changes in the 

economy based on the following three factors:


background image

11

Irina NASALCIUC

DATA SOURCES AND METHODS

changes in the technological efficiency of energy use at the sector level;

changes in the structure of economic activities; or

changes at the level of economic activities.

The economic activities, which are reflected in chang-

es of economic production from one period to another 

(e.g., increases in total production of economies), as 

well as changes in the structure of economic activities 

observed at the sectoral level (e.g., transitioning to ser-

vice-based economies like in Great Britain), and the ef-

ficiency of energy consumption in different industries, 

all drive fluctuations in energy demand levels over time. 

The results of the referenced studies (

Ang & Zhang, 

2000

Ang, 2004

) demonstrate that the structure of the 

economy plays a significant role in determining energy 

intensity  values,  which  in  turn  directly  affects  energy 

demand levels.

Energy demand forecasting involves the prediction of 

the future energy demand based on the observation 

of historical demand trends that consider the demand 

growth rate, the demand elasticity, and the energy 

intensity.

Demand growth rate – indicator that measures the growth rate of energy demand either from one year 

to another or from one period to another. Therefore:

Elasticity of demand – indicator that measures the variation of demand (in %) under conditions where 

the determining variable changes by 1%. In economic analysis, the variables of elasticity most often used are - eco-

nomic activity (GDP), price and income. The demand elasticity indicator can be measured by using the correlation 

of the annual growth rate of energy consumption and the determining variable or through the lens of econometric 

correlations related to time series data.

where: a – annual increase in demand; Et+1 – energy consumption in year + 1 and Et – energy demand in year t

a = (Et+1 − Et )/Et       (1)

where: t – a given period of time; EC – energy consumption; I – the determining variable of energy consumption 

such as GDP, added value, price, income, etc. and Δ – variable change.   

Energy Intensity (EI) – measures the amount of energy required (aggregated or disaggregated) per unit of 

economic production.

where: E

it 

= energy consumption for each type of energy in year t, I

t

 = the determining variable of energy consumption 

– GDP volume per national economic sector.

Usually,  GDP  growth  shows  a  positive  correlation  with 

energy demand growth, respectively in the situation 

when the GDP growth is greater than 1%, the demand is 

elastic in relation to the gross domestic product and in the 

situation when the elasticity is 0<e

GDP

<1, the demand is 

considered inelastic. In most cases, developed countries 

express inelastic demand vis-à-vis gross domestic 

product and developing countries tend to consume larger 

amounts of energy to ensure the growth of economies 

that invest in industrial activities and provide higher 

levels of consumer demand from the residential sector.

On the other hand, demand elasticity is inversely 

proportional to each percentage increase in the energy 

price, implying that higher energy prices result in 

decreased energy demand, at least for the short term. 

Consumers may be unable to adjust their budgets in 

response to energy price hikes, leading to reduced energy 

consumption. However, in the long term, elasticity tends 

to adjust as consumer budgets adapt to the higher prices. 

Moreover, the price elasticity of demand for energy 

varies depending on the type of fuel used in the energy 

production process.


background image

12

ECONOMY and SOCIOLOGY 

June No. 1/2023

In the comparative analysis of the levels of energy 

intensities at the macroeconomic level as well as for the 

non-productive sectors - transport and residential, it is 

recommended  to  use  the  determinant  variable  -  GDP, 

and in the case of productive sectors such as commercial, 

industrial and agricultural, the use of added value as 

the determinant variable. However, comparing the 

energy  intensity  at  the  level  of  different  countries  is  a 

difficult task since both the GDP and the added value are 

aggregated and structured variables at the level of each 

country, presenting particularities of measurement. 

For example, in the measurement of GDP there may be 

measurement gaps when the economy operates under 

the conditions of informal economies (most often found 

in developing countries) or in the case of converting GDP 

at the same exchange rate - in the most frequent cases 

the conversion to USD is chosen, which does not always 

express the real dynamics in the economic sector. 

The study uses the regression method for forecasting 

the medium-term (for a period of five years or less) and 

long-term time frames (for a period of 10 years or more) 

for modelling the renewable energy demand forecast. 

Also, based on the model described in the papers of Ang 

& Zhang (

2000

) and Ang (

2004

) for the changes in total 

energy demand, we have:

where: EI

i

 – the energy intensity at the level of sector i (e.g. the rate of energy consumption relative to the economic 

production of the sector); S

– the structure of sector i (e.g. the contribution of the production of sector i to the total 

production of the economy); Q – the total productivity of the economy; Q

i

 – the productivity of sector i; E – total 

energy consumption; E

i

 – energy consumption of sector i.

When attempting to identify the changes impact of one of the three factors listed above over energy consumption, 

we will have:

• 

for changes in the technological efficiency of energy use at the sector level:

• 

for changes in the structure of economic activities:

• 

for changes at the level of economic activities:

All provided models may be applied to Moldova’s case 

study and the results may inform the decision makers 

on the necessary measures that have to be adopted for 

a rapid integration of RES sources into the national 

portfolio of energy.

Observing historical energy demand trends in Moldova 

serves as the primary foundation for evaluating future 

demand growth levels, the degree of demand elasticity, 

and the energy intensity rate. These indicators play a 

crucial role in medium and long-term market evolution 

forecasting exercises and in planning national energy 

portfolios that balance the integration of RES and 

conventional energy generations. The application of 

this approach in the long-term energy market planning 

ensures that the energy system develops and adapts 

effectively to market transitions. 

In order to identify the average annual growth rate of 

final energy consumption as well as to identify the levels 

of  final  energy/electricity  consumption  towards  2025 

and 2030 year, the following relationships were used:

where: 

v

1

 – total final energy consumption in T

1

v

2

 – total final energy consumption in T

2

, n – number of years.

Also, to determine the elasticity of the energy demand 

of Moldova, according to the relation (3), in relation to 

the selected elasticity variables (in our case - economic 

activity  -  GDP)  according,  we  will  identify  the  type  of 

economic policy carried out by the decision-makers with 

regards to new investments and the type of prioritized 

economic activities.


background image

13

Irina NASALCIUC

MAIN RESULTS

The analysis of the historical energy demand trends 

and the assessment of its growth forecast for 2025 and 

2030, considering the data published by Moldova’s 

National Bureau of Statistics (NBS) in the period of 

2010-2021 years and the data of the World Bank (for the 

GDP indicator), is structured as follows (Table 1.):

Table 1. 

Forecast of energy demand growth trends in Moldova for 2025 and 2030 year

Indicators

2011

2013

2015

2017

2019

2021

For

eseen le

vels

2025

2030

GDP (M USD)

8 414

9 497

7 745

9 670

11 970

13 680

16 812

21 755

Total final consumption 

(thousands toe)

2 406

2 390

2 455

2 719

2,739

2,924

3 164

3 491

Final electricity 

consumption (MWh)

3 384

3 559

3 687

3 687

3 803

4 129

4 472

4 942

Annual growth rate of 

final energy consumption

-

-0,003

0,014

0,052

0,004

0,033

Annual growth rate 

of final electricity 

consumption

-

0,025

0,018

0

0,016

0,042

Annual GDP growth rate

-

0,062

-0,097

0,117

0,113

0,069

Average annual growth 

rate of final energy 

consumption (r1)

0,01989249

Average rate of annual 

increase in electricity 

consumption (r2)

0,02016983

Average GDP growth rate

0,52897438

Source: 

calculated based on NBS and the World Bank (WB) data

When  considering  the  historical  final  energy 

consumption trends, we can observe the continuity of 

energy and electricity consumption growth by 10,74% 

towards 2025 year and by 22,19% towards 2030 year. 

The trend of 1,99% annual growth of energy demand 

is necessary when considering Moldova’s current 

demographic situation as well as the current economic 

development rates. Thus, for the pessimistic scenario 

we will consider the registered shares of renewable 

energy (24,3%) in gross final energy consumption (2 857 

thousand toe) of the 2020 year, which is considered as 

baseline data, and will apply the average annual growth 

rate  of  the  identified  final  energy  consumption.  To 

continue evaluating the growth rate of Moldova’s energy 

demand in the medium (toward 2025 year) and long 

term (toward 2030 year), it is necessary to consider the 

following strategic country targets:

The 3,5% target of annual GDP growth till 2030 year according to the National Development Strategy

(NDS) of Moldova until 2030 year.

The inflow of foreign direct investments as a share of GDP, which sets a target of 3,5% annually until 2026

year and of 4% until 2030 year (

NDS, 2020

).

The  target  of  410  MW  of  new  electrical  RES  capacity  installed  by  2025  year,  mostly  from  wind  and

photovoltaic sources (amendment of Government Decision (

HG 401/2021

).


background image

14

ECONOMY and SOCIOLOGY 

June No. 1/2023

Also, when applying the relation (6), we obtain EPIB 

=0,177/ 0,385 = 0,46 and respectively a relatively 

inelastic demand vis-à-vis the country’s GDP (0 <EPIB< 

1). Thus, a 3,5% annual increase in GDP predicted in the 

SND until 2030 will be directly proportionally reflected 

in the levels of gross energy consumption, including 

those of RES energy (Figure 1.):

Figure 1. 

Forecast of RES gross final energy consumption evolution applying the average annual growth rate of 

final energy consumption and considering the forecast levels of GDP until 2030 year (in thousands toe)

Source: 

calculated based on NBS and the World Bank (WB) data

The results show that under the pessimistic RES energy 

demand forecast model, the growth trend of final gross 

consumption of RES energy towards 2030 year shows an 

increase of 21,77%. An average scenario for forecasting 

future RES energy demands would consider the 

predicted rates of economic development and the future 

needs of the country, while the optimistic scenario 

would consider the future targets set for RES shares in 

gross final energy consumption until 2025/2030 years. 

Even though Moldova secures 24,3% of its total 

energy supply from RES sources, these indicators 

are determined by the solid biofuels widely used in 

the residential sector, especially in the rural areas 

of the country. However, in terms of the supply and 

consumption of electricity from RES sources, a critical 

level  of  only  13%  of  final  consumption  is  recorded, 

which imposes serious problems on national security 

if  considering  the  emerging  trends  of  electrification 

of  final  consumption  as  well  as  consumption  levels 

observed at the international level. Based on the above, 

we propose extracting the electricity segment from the 

proposed forecasts and projecting them until 2025 year 

and respectively until 2030 year considering (Figure 2.):

• 

The historical average annual GDP growth rate of 5,29% during the period of 2011-2021 years;

• 

EU’s target of 34% generation from renewable sources in the final electricity consumption (until 2025 year)

and respectively 38% (until 2030 year);

• 

The current regional and international energy crisis urges the need to identify funding sources for investments

in new RES plants, which will be develop quite actively until 2025 year;

• 

The  undeveloped  potential  of  Moldova’s  energy  from  RES  sources  amounts  to  approximately  27  GW  of

capacity (

IRENA, 2019

);

• 

RES distributive generation leads to little losses in the electrical network, respectively we will consider the

electricity generation from RES sources equal to its consumption;

• 

In the period of 2025-2030 years, the generation of electricity from RES sources will slow down due to the

infrastructure limitations of the electricity networks that exist, as well as the existing balancing limitations.


background image

15

Irina NASALCIUC

Figure 2. 

Forecasts  of  RES  electricity  generation  growth  considering  the  optimistic,  medium  and  pessimistic 

scenarios

Table 2. 

The evolution of energy intensity levels of Moldova’s economy in the period of 2011-2021 year

Source: 

calculated based on NBS and the World Bank (WB) data

Source: 

calculated based on NBS and the World Bank (WB) data

The optimistic and medium scenarios of the proposed 

forecast envisage reaching ambitious but realistic levels of 

RES technologies’ integration in final consumption of the 

economic and residential sectors. It is worth mentioning 

that the current national electric system and infrastructure 

network can absorb the proposed volumes of intermittent 

energy, whereas maintaining the same ambitious levels 

of RES integration after the 2025 year is conditioned 

by ambitious investments in the modernization and 

adjustment of the national energy infrastructure.

To determine the extent to which some segments 

of Moldova’s economy are energy consumers, it is 

necessary to measure the energy intensity indicator of 

the various national economic sectors according to the 

formula (4). As input data, NBS data will be used that 

reflect the amounts of energy required for the economic 

production of the industrial, agricultural and services’ 

sectors, as well as World Bank’s data on GDP levels in 

Moldova (Table 2.):

Sector/Indicator

2011

2013

2015

2017

2019

2021

Final Energy Consumption (thousand toe)

2 406

2 390

2 455

2 719

2 739

2 924

GDP (M USD)

8 414

9 497

7 745

9 670

11 970

13 680

Total Energy Intensity (EI) (toe/GDP unit)

0,285

0,251

0,317

0,281

0,229

0,214

Final Energy Consumption of the Agricultural 

Sector (thousands toe)

69

64

74

107

123

161

Agricultural Sector GDP 
(M USD)

957,5

1 096,9

891,4

1 109,1

1 217,3

1 421,4

Agricultural Sector EI (toe/GDP unit)

0,072

0,058

0,083

0,096

0,101

0,096

Final Energy Consumption of the Industrial 

Sector (thousands toe)

235

257

209

217

234

245

Industrial Sector GDP (M USD)

1 759,4

2 051,3

1 757,3

2 114,8

2 696,8

2 819,4

Industrial Sector EI (toe/GDP unit)

0,134

0,125

0,119

0,103

0,087

0,081

Final Energy Consumption of the Services 

Sector (thousands toe)

277

259

260

267

272

290

Services Sector GDP (M USD)

4 507,4

5 014,4

4 097,1

5 144,4

6 502,1

7 503,5

Services Sector EI (toe/GDP unit)

0,061

0,052

0,063

0,052

0,042

0,037

Source: 

calculated based on NBS and the World Bank (WB) data


background image

16

ECONOMY and SOCIOLOGY 

June No. 1/2023

In order to identify the energy intensity levels of the 

three economic sectors of Moldova was used the 

(3)  relationship.  As  we  can  see,  the  aggregated  final 

energy intensity at the economy level shows a 33,17% 

decrease trend during the 2011-2021 years. This 

result demonstrates that Moldova is going through 

various transitions in terms of the development and 

specialization of the national economy, including 

changes in the structure of the economy, with the 

dominant engine of country’s economic growth being 

the  services’  sector.  Thus,  the  analysis  identified  a 

64,86% decrease in energy intensity of the services’ 

sector and a 65,43% decrease for the industrial sector. 

During the entire analysed period, the services’ sector 

contributed with more than 50% to the country’s GDP 

composition and the volume of GDP poured into the total 

GDP increased by 66%. Similarly, in the industry sector, 

which contributed on average with more than 20% to 

the country’s GDP composition, a 60% increase in the 

GDP volume of the sector poured into the total GDP is 

attested. Therefore, we can rely on an improved yield of 

the economic productivity of the services and industry 

sectors, that is a result of the energy management 

solutions and technologies implementation, as well as 

a possible migration towards the types of economic 

activities that are less energy-consuming, which leads 

to the efficiency of economic activities. 

At the same time, a trend of 25% increase in the energy 

intensity of the agricultural sector was identified, given 

that the sector recorded a 48% increase in the volume 

of  GDP  poured  into  the  total  GDP,  but  also  a  historic 

decrease of 1 % in the contributions to the country’s 

GDP  composition.  In  this  case  we  can  talk  about  an 

astringent  need  to  integrate  efficient  technologies  and 

processes while maintaining high standards of labor 

competitiveness, product quality and compliance 

with European and international standards and to 

aggressively develop market linkages to facilitate trade 

and  investment,  especially  under  the  DCFTA  trade 

liberalization agreement with the EU. 

Monitoring the energy intensity of economies is a tool 

that provides valuable data for informing the adaptation 

of energy sector management policies and development 

strategies towards transitions focused on less energy-

consuming activities, more active RES generation, and 

higher energy efficiency rates (see Figure 3):

Figure 3. 

The evolution of Moldova’s energy intensity levels during 2011-2021 years

Source: 

calculated based on NBS and the World Bank (WB) data

During  the  period  of  2015-2021  years  (Figure  3),  the 

intensity of Moldova’s economy registered a 33,17% 

improvement  of  production  efficiency.  This  trend  is 

primarily determined by the industrial and services’ 

sectors, which show decreases of 65,43% and 64,86%, 

respectively, while the agricultural sector registers an 

increase of approximately 25,0%, given the traditional 

energy consumption at the level of several economic 

subsectors. 

The analysis of the energy demand includes the indicator 

of the total productivity of the economy, which refers to the 

measurements of the outputs of the production processes at 

the level of economic sectors and their efficiency (Table 3). 


background image

17

Irina NASALCIUC

DISCUSSIONS

Table 3. 

Analysis of the energy efficiency of production processes at the level of the main Moldova’s economic 

sectors

Source: 

author’s calculations

*Note: 

The University of Groningen database was used for the total productivity factor indicator (https://www.rug.nl/ggdc/productivity/pwt/)

2011

2013

2015

2017

2019

Total Productivity Factor (Q)*

0,94

0,98

0,95

1,0

1,03

S

i(agriculture)

11,38

11,55

11,51

11,47

10,17

S

i(industry)

20,91

21,60

22,69

21,87

22,53

S

i(services)

53,57

52,80

52,98

53,20

54,32

EI

i (agriculture)

0,072

0,058

0,083

0,096

0,101

EI

i (industry)

0,134

0,125

0,119

0,103

0,087

EI

i (services)

0,061

0,052

0,063

0,052

0,042

I

(agriculture)

-

-0,158

-0,153

0,241

0,524

I

 (industry)

-

-0,191

-0,517

-1,203

-2,367

(services)

-

-0,466

-0,352

-0,851

-1,958

S

(agriculture)

-

0,009

0,024

0,037

-0,085

S

(industry)

-

0,085

0,279

0,353

0,453

S

(services)

-

-0,039

-0,081

-0,089

-0,042

Q

(agriculture)

-

0,027

0,048

0,121

0,205

Q

(industry)

-

0,108

0,135

0,247

0,392

Q

(services)

-

0,110

0,167

0,304

0,456

Also, to analyse the changes in the total energy demand of the three economic sectors of Moldova, the (4) relationships 

were used.

The results show that at the level of changes in the 

technological  efficiency  of  energy  use  (I)  is  recorded 

an increase of 320,17% for the services’ sector and for 

the industrial sector the increase is by 12 times. In 

the services sector, the improvement of the indicator 

was possible thanks to the active adoption of modern 

and efficient technologies. In the industrial sector, the 

processes driving the improvement of the technological 

efficiency  of  energy  use  showed  a  greater  amplitude, 

which was determined by the active adoption of 

efficient  technologies  and  the  more  efficient  allocation 

of resources.  In the agricultural sector, the situation is 

different. It regressed by 231,65% during the analyzed 

period, mainly due to inadequate risk mitigation 

measures related to limited access to irrigation and 

meteorological factors. Additionally, the reduced 

adoption of modern and innovative agricultural 

technologies  with  energy-efficient  consumption  has 

contributed to this regression.

At the same time, for the indicator of changes in the 

structure of economic activities (S), a decommissioning 

economic process in the agricultural sector is identified. 

This process is attributed to the sector's failure to adapt 

to modern and innovative market structures, as well as 

its reliance on outdated methods and processes from a 

systemic perspective. The industrial sector recorded a 

remarkable improvement in the structure of economic 


background image

18

ECONOMY and SOCIOLOGY 

June No. 1/2023

activities of 432,94%, which speaks of an active transition 

of economic activities to modern market structures, and 

a continuous monitoring and evaluation of economic 

processes to continuously adapt the economic activities. 

In the case of the services sector, we can identify a 7,69% 

decrease  in  the  efficiency  of  the  structure  of  economic 

activities,  which  is  not  significant  and  doesn’t  impact 

other indicators analyzed in the study. The agricultural 

sector’s structure of economic activities recorded the 

most dramatic regress in the period of 2005-2010 years, 

with an 844,44% decrease trend in the efficiency of the 

established market structures.

Respectively, the rise in energy intensity trends within 

the national economy could also be attributed to a 

potentially  more  significant  shift  towards  an  informal 

economy. Although there are observed trends of 

improving energy intensity in the economy, Moldova's 

companies have made very limited progress in terms 

of  efficiency  and  competitiveness.  The  World  Bank 

(

WB, 2013

) study findings during the 2003-2011 years 

demonstrate a negative total factor productivity of the 

economy in both the industrial and agricultural sectors, 

with modest progress recorded in the services sector. 

The main obstacles that Moldova’s economy is facing 

are political instability, corruption, an unprepared and 

uneducated workforce, as well as a reduced access to 

financing  (

EBRD,  2014

).  The  results  identified  at  the 

economy’s intensity level of Moldova can be explained 

by identifying changes in the technological efficiency of 

energy use at the level of economic sectors, changes in 

the structure of economic activities, or changes at the 

level of economic activities. 

In order to achieve a higher level of development of the 

RES market in Moldova and prevent the emergence 

of energy shortage problems on the local market, it is 

crucial to protect the interests of economic agents and 

citizens. Additionally, a robust RES market represents 

an essential source of investment for the country's 

economic development. To achieve this, it is necessary 

to attract the required volume of investments by 

promoting innovative market reforms, implementing a 

liberalization agenda, and ensuring equal competition 

within the sector.

Moldova's energy consumption tends to remain 

relatively uniform compared to its GDP growth levels. 

The  country  does  not  invest  significantly  in  economic 

growth or new industrial activities and processes, 

primarily focusing on ensuring the necessary energy 

demand levels for consumers in the residential sector. 

These  findings  underscore  Moldova's  position  among 

the group of former socialist countries that still exhibit 

features of inherited economies and are actively engaged 

in the process of restructuring their economies.

CONCLUSIONS

The  decreasing  trend  of  final  energy  intensity  is 

expected to align to the values recorded in developed 

European countries as Moldova's national economy 

transitions towards the structure and models seen 

in Western economies. This improvement in energy 

intensity is driven by more rational energy consumption 

and increasing technology adoption in the industrial 

and service sectors.

However, the agricultural sector shows a contrasting 

trend with increasing energy intensity over time. This 

can be attributed to the low integration rate of modern 

and innovative agricultural technologies and energy-

efficient  processes.  The  lack  of  integration  hampers 

efforts  to  mitigate  risks  related  to  limited  access  to 

irrigation, meteorological data factors, and compliance 

with high workforce competitiveness and product 

quality standards required to meet European and 

international benchmarks.

The research presented in this paper expands the existing 

knowledge on RES investment management. The focus 

on forecasting RES integration scenarios, particularly 

in the electricity segment, and promoting investments 

in Moldova until 2025 and 2030 is commendable. The 

findings from this research can serve as valuable insights 

for policymakers in designing renewable energy policies 

and encouraging investments in modern renewable 

energy technologies to produce electricity.

Moreover, the proposed methodology and results hold 

general relevance and can be applied in assessments for 

other countries in the region with emerging economies. 

To enhance the research further, incorporating expert 

interviews and case study assessments could help 

explore other nuances and aspects within the sector 

that contribute to the topic under investigation. This 

comprehensive approach would enrich the study and offer 

a more robust foundation for policy recommendations 

and investment decisions.


background image

19

Irina NASALCIUC

REFERENCES

Abdullahi, D., Suresh, S., Renukappa, S., & Oloke, D. (

2017

). Key barriers to the implementation of solar energy  

in Nigeria: a critical analysis.In IOP Conference Series Earth Environmental Science: 2nd International 

Conference on Green Energy Technology (ICGET 2017), 18-20 July 2017, Rome, Italy, 83, 012015.

 https://

doi.org/10.1088/1755-1315/83/1/012015

Ang, B. W., & Zhang, F. Q. (

2000

). A survey of index decomposition analysis in energy and environmental studies. 

Energy, 25(12), 1149-1176

https://doi.org/10.1016/S0360-5442(00)00039-6

Ang, B. W. (

2004

). Decomposition analysis for policymaking in energy: Which is the preferred method? Energy 

Policy, 32(9), 1131-1139

https://doi.org/10.1016/S0301-4215(03)00076-4

Badri, M. A. (

1992

). Analysis of demand for electricity in the United States. Energy, 17(7), 725-733. 

https://doi.

org/10.1016/0360-5442(92)90080-J

Cohen, J. J., Azarova, V., Kollmann A., & Reichl, J. (

2021

). Preferences for community renewable energy 

investments in Europe. Energy Economics, 100, 105386.

 https://doi.org/10.1016/j.eneco.2021.105386

 

Dato, P. (

2018

). Investment in energy efficiency. Adoption of renewable energy and household behavior: evidence 

from OECD countries. The Energy Journal, 39(3), 213-44.  

https://www.jstor.org/stable/26534449

 

Debnath, K. B. &  Mourshed, M. (

2018

). Forecasting methods in energy planning models. Renewable and 

Sustainable Energy Reviews, 88,  297-325

https://doi.org/10.1016/j.rser.2018.02.002

Deeble, V. C., & Probert, S. D. (

1986

). Straight-line correlations for annual energy-consumption predictions? 

Applied Energy, 25(1), 23-39

https://doi.org/10.1016/0306-2619(86)90060-7

Egli, F. (

2020

). Renewable energy investment risk: an investigation of changes over time and the underlying 

drivers. Energy Pol, 140, 111428.

 https://doi.org/10.1016/j.enpol.2020.111428

 

European Bank for Reconstruction and Development (EBRD). (

2014

). Study of the Business Environment and 

Enterprise Performance, BEEPS V (2011-2014). London.  

http://ebrd-beeps.com 

Greene D. L., (

2009

). Measuring Energy Sustainability. In T. E. Graedel & E. van der Voet 

(Eds.), Linkages of Sustainability (Vol. 4, pp. 354-373). Cambridge: The MIT Press.                                                                                         

https://doi.org/10.7551/mitpress/8455.003.0026

          

Gropa, V. (

2018

). Estimation of the wind power impact on the power system of the Republic of Moldova [Doctoral 

thesis]. Technical University of Moldova. 

 http://www.cnaa.md/en/thesis/52069/

Hotărâre cu privire la aprobarea limitelor de capacitate, a cotelor maxime și a categoriilor de capacitate în 

domeniul energiei electrice din surse regenerabile valabile până la data de 31 decembrie 2025, nr. 401 din 

08-12-2021. (

2021

). Monitorul Oficial al Republicii Moldova,  302-306, art. 684.  

https://www.legis.md/

cautare/getResults?doc_id=128987&lang=ro

International Renewable Energy Agency (IRENA). (

2019

). Renewables Readiness Assessment: 

Republic of Moldova

https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.

net/-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_RRA_Moldova_2019_

EN.pdf?rev=ee83faa67c5f457e86835305d2ed29d4 

Kitzing, L. (

2014

). Risk implications of renewable support instruments: Comparative analysis of feed-in 

tariffs and premiums using a mean-variance approach. Energy, 64, 495-505. 

https://doi.org/10.1016/j.

energy.2013.10.008

 

Kleinpeter, M. (

1995

). Energy planning and policy. England: John Wiley & Sons Ltd.

Labys, W. C. (

1990

). Econometric supply models. Energy 15(7-8), 545-547

https://doi.org/10.1016/0360-

5442(90)90003-K

Lee, A. H. I., Kang, H.-Y., & Huang, T.-T. (

2017

). Project Management Model for Constructing a Renewable Energy 

Plant. Procedia Engineering, 174, 145-154. 

https://doi.org/10.1016/j.proeng.2017.01.186  

Liu, X., & Zeng, M. (

2017

). Renewable energy investment risk evaluation model based on system dynamics. 

Renewable and Sustainable Energy Reviews, 73, 782-788. 

https://doi.org/10.1016/j.rser.2017.02.019

Michalik, G., Khan, M. E., Bonwick, W. J., & Mielczarski, W. (

1997

). Structural modelling of energy demand in the 

residential sector: 1. Development of structural models. Energy, 22(10), 937-947. 

https://doi.org/10.1016/

s0360-5442(97)00029-7

 


background image

20

ECONOMY and SOCIOLOGY 

June No. 1/2023

Movilla, S., Miguel, L. J., & Blázquez, L. F. (

2013

). A system dynamics approach for the photovoltaic energy market 

in Spain. Energy Policy, 60, 142-154.  

https://doi.org/10.1016/j.enpol.2013.04.072

Nasalciuc, I. (

2016a

). Economic aspects of fossil fuel social costs. Why do we subsidize and mediate the climate 

change process? The Journal Contemporary Economy = Revista Economia Contemporană 1(4), 133-147. 

http://www.revec.r o/papers/160409.pdf 

Nasalciuc, I. (

2016b

). Managing the renewable energy grid integration process: risks and challenges. Journal of 

Financial and Monetary Economics, 3, 203-214. 

https://ideas.repec.org/a/vls/rojfme/v3y2016i1p203-214.

html

 

Moldova National Development Strategy (NDS) “European Moldova 2030”. (

2022

). Monitorul Oficial al Republicii 

Moldova, 409-410, art. 758

https://monitorul.gov.md/ro/monitorul/view/pdf/2579/part/1#page=30

                                                          

Prasad, R. D., Bansal, R. C., & Raturi, A. (

2014

). Multi-faceted energy planning: A review. Renewable and 

Sustainable Energy Reviews, 38, 686-699

http://repository.usp.ac.fj/7558/1/Multi_-_faceted_energy_

planning-a_review.pdf 

Qiu, D., Dinçer, H., Yüksel, S., & Ubay, G. G. (

2020

). Multi-faceted analysis of systematic risk-based wind energy 

investment decisions in E7 economies using modified hybrid modeling with IT2 Fuzzy Sets. Energies, 13, 

1423. 

https://doi.org/10.3390/en13061423

Schiera, D. S., Minuto, F. D., Bottaccioli, L., Borchiellini, R., & Lanzini, A. (

2019

). Analysis of rooftop photovoltaics 

diffusion in energy community buildings by a novel GIS- and agent-based modeling Co-simulation 

platform. IEEE Access, 7, 93404-93432

https://doi.org/10.1109/ACCESS.2019.2927446

Schinko, T., & Komendantova, N. (

2016

). De-risking investment into concentrated solar power in North Africa: 

Impacts on the costs of electricity generation. Renewable Energy, 92, 262-272. 

https://doi.org/10.1016/j.

renene.2016.02.009

Schwerhoff, G., & SY, M. (

2017

). Financing renewable energy in Africa - Key challenge of the sustainable 

development goals. Renewable and Sustainable Energy Reviews, 75, 393-401

https://doi.org/10.1016/j.

rser.2016.11.004

Shaktawat, A., & Vadhera, S. (

2021

). Risk management of hydropower projects for sustainable development: a 

review. Environment, Development and Sustainability, 23(8), 45-7

https://doi.org/10.1007/s10668-020-

00607-2

 

Sterman, J. D. (

1988

). Modelling the formation of expectations: The history of energy demand forecasts. 

International Journal of Forecasting, 4(2), 243-259

https://doi.org/10.1016/0169-2070(88)90080-5

Sterman, J. D., Richardson, G. P., & Davidsen, P. (

1988

). Modelling the estimation of petroleum resources in the 

United States. Technological Forecasting and Social Change, 33(3), 219-249.

 https://doi.org/10.1016/0040-

1625(88)90015-7

Taghizadeh-Hesary, F., &Yoshino, N. (

2020

). Sustainable Solutions for Green Financing and Investment in 

Renewable Energy Projecte. Energies, 13(4), 788

https://doi.org/10.3390/en13040788

World Bank. (

2013

). Moldova - Policy priorities for private sector development: Main report. (English). 

Washington, D.C.: World Bank Group. 

https://documents.worldbank.org/en/publication/documents-

reports/documentdetail/720051468275127219/main-report

 

World Energy Council. (

2022

). World Energy Trilemma Index 2022

https://www.worldenergy.org/publications

  

Zmeureanu, R. (

1992

). A new method for evaluating the normalized energy consumption in office buildings. 

Energy, 17(3), 235-246. 

https://doi.org/10.1016/0360-5442(92)90051-Z